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1. Introduction 

It is common that the differential equations used to model physical systems possess 
some "structural" features that embody important physical properties (e.g., differential- 
algebraic invariants such as energy) which are reflected in the qualitative behavior 
of the system. Often, this structure is purposely built-in to the model on physical 
grounds. Unless the numerical methods are specially designed, a numerical solution of 
such a system will not, in general, respect this structure, leaving open the possibility 
of qualitatively incorrect results. Structural considerations are particularly important 
when the time domain of interest is much larger than the system's characteristic time 
scale(s). In such cases it can be difficult, if not impossible, to obtain even qualitatively 
correct results when the numerical method does not preserve the system's structure. (A 
particularly interesting example is the simulation of the long-time evolution of the solar 
system where phase-space conserving (symplectic) techniques proved indispensable [1].) 
At the very least, the penalty for ignoring the essential structure of the system is a 
greatly increased computational cost forced by the necessity of a small time step to 
keep the effects of structural errors from accumulating catastrophically. For a more 
detailed discussion of these effects along with various examples see Shadwick et al. [2] 
and the references therein. 

The goal is not to eliminate all numerical error but rather to identify and minimize 
those classes of numerical errors that are most damaging to the solution. Backwards 
error analysis [3-7] provides significant understanding in how a numerical method may 
lead to a numerical solution with qualitatively incorrect behaviour. The basic approach 
is to take the view that when a numerical method is applied to a given differential 
equation, the resulting numerical solution, while an approximation to the exact solution 
of the original equation, is, in fact, the exact solution of some differential equation. 
Clearly this second differential equation is related to the original equation, and the 
form of this new equation can often lead to valuable insight into the behaviour of the 
numerical method [8]. Of particular importance will be the physical consequence of any 
coupling terms not present in the original system; it is terms of this type which axe the 
cause of structural errors. 

These ideas are also relevant to weakly non-ideal systems, for example systems 
with a small amount of dissipation. Using the technique of operator splitting [9,10], 
one separates the differential operator into two pieces: the operator representing the 
ideal part of the system and whatever non-ideal terms remain. A structure-preserving 
integrator is used for the former and a generic method for the latter. This technique 
guarantees that the numerical solution has the proper limit as the dissipation terms 
vanish. Specifically, consider the system of equations 

tf = £i[V]+AM (1) 
and let <Si(r) and ^(r) be the respective numerical evolution operators for a time 
interval r.   If <Si and <S2 are accurate to at least second order, then a second order 



approximation to the full evolution is 

V»(t + r) = 5i(|r) o<S2(r) o^d^W + 0(r3), (2) 

where o denotes operator composition. 
Consider a weakly dissipative system, which in the absence of dissipation possesses 

some structure (for example, in the ideal limit the system may be Hamiltonian). In 
this case, the structural errors committed by standard methods can mimic the effects 
of dissipation, enhancing (or perhaps masking) what would otherwise be a small effect. 
In strongly non-ideal systems, the errors introduced in evolving the ideal part of the 
system are not as significant in that they are not likely to yield behaviours that are 
not otherwise present. The same is true for errors encountered in the evolution of the 
dissipative terms. Empirically, one finds that dissipation terms tend to be sufficiently 
simple that they possess no delicate structure. Consequently, numerical errors will 
generally not result in qualitatively different behaviour, merely in different effective 

values for the dissipation parameters. 

2. n-Level Quantum Systems with Weak Dissipation 

Our interest here is to explore how these ideas can be applied to an n-level quantum 
system described by a density matrix, p, subject to both reversible and irreversible 
processes. A general dynamical equation governing the evolution of p is the master 

equation [11] 

hp=-i[H,p)+A[p}, (3) 

where the hermitian Hamiltonian H describes the reversible dynamics and the (general) 
dissipation+ is represented by the linear operator A. Examples include an atomic 
system interacting with an external radiation field subject to spontaneous emission or a 
collection of ions in a trapping potential subject to external laser pulses and decoherence. 
We are most concerned with the case where the irreversible processes are weak compared 
to the reversible processes, i.e., the case ||A|| < \\H\\. 

For the moment, let us consider the properties of the quantum Liouville 
equation [12], the ideal counterpart of (3): 

hp=-i[H,p\. (4) 

This equation has a non-trivial kinematic structure — the Hioe-Eberly invariants 

cj = trpj,    j = l,2...n (5) 

are non-evolving regardless of the form of the Hamiltonian [13]. These invariants are a 
direct consequence of the unitary evolution of the density matrix and are the analogues 
of the Poincare invariants in classical mechanics, carrying information of equal physical 

+ Although here we are primarily concerned with dissipative processes, A can represent arbitrary non- 

Hamiltonian processes. 



import. A numerical solution of (4) where the Cj axe not preserved is thus in danger of 
being unphysical. 

In the method of unitary integration [14], the structure of the quantum Liouville 
equation is preserved exactly since the numerical time advance map is constructed as a 
unitary transformation. That is, the density matrix is evolved through a time interval 

r according to 

Qn+i = U6nW, (6) 

where gn is the numerical approximation to p{nT) and U is a unitary matrix which 
approximates the true evolution operator il(t, t + r) accurate through order K in r: 

U = il(t,t + T) + 0(TK+l). (7) 

Thus, although gn is only a numerical approximation to the true solution of the quantum 
Liouville equation, the c,- are exactly conserved. Furthermore, since the numerical 
method advances gn in time by a unitary transformation, we are guaranteed that the 
numerical solution will be hermitian. 

Returning to (3), our strategy is to use a unitary integrator for the Hamiltonian 
part of the evolution and a generic algorithm for the dissipative terms. Thus in the 
limit ||A|| -> 0, the Hioe-Eberly invariants are exactly conserved. In this way we 
guarantee that all dissipation and decoherence (variation of the Cj) are due to the non- 
Hamiltonian terms, and not to any numerical artifacts. 

3. Constructing Unitary Integrators 

As with every unitary matrix, U can be expressed as the exponential of an anti-hermitian 
matrix. For our purposes, it is convenient to write 

U(t,T) = e-irA^T\ (8) 

where A is hermitian. The matrix A is computed by expanding (6) in a Taylor series 
about T — 0 and matching term-by-term with the Taylor series for p(t + r) obtained 
from the quantum Liouville equation. A straightforward, if tedious, calculation [14] 
reveals the following approximations for A: to second order 

A = H(t) + ±TH'(t); (9) 

to third order 

A = H(t) + i r H'(t) + 1 r2 H"(t) + 1 r2 [H(t), H\t)\; (10) 

and to fourth order* 

A = H(t) + LrH{t)' + tf*H(t)» + ±r3H(ty 

+ ^r2 [H(t), H(t)>] + ^r3 [H(t), H(t)"}. (11) 

There is a misprint in (6) of Ref. [14] which is corrected here. 



Note that to obtain accuracy beyond second order, one must take into account that, in 
general, [tffa), #(*2)]^0. 

Fortunately, to use these expressions for U, it is not necessary to exponentiate a 
(general, possibly quite dense) n x n matrix. We are free to approximate A in any 
way consistent with the order of the method. This freedom can be used to simplify the 
construction of U(t, r). In the following, it is convenient to assume that H is traceless. 
To begin, let A* be a basis for the set of all (traceless) nxn hermitian matrices, with 
normalization 

tr\i\j = 2 8ij, (12) 

whence 
n2-l 

A=Y^akh,        where       ak = ltrA\k. (13) 
fc=i 

In addition, we may choose the \k in such a way that either Afc is diagonal or has at 
most two non-zero elements.   In either case, eiaAfc is easily computed.   Our goal is to 
replace the single exponential in (8) with a product of exponentials of the \k: 

n2-l 
e-wA = -Q e-wßkxk + 0(T«+i)i (14) 

for some ßk.   Since the \k do not necessarily commute with one another, the ßk will 
depend on the a3- in a complicated manner. 

While it is possible to determine the ßk in (14) by repeated application of either 
the Campbell-Baker-Hausdorf [15-17] or the Zassenhaus [18] formula, such an approach 
quickly becomes quite complicated as n increases and does not seem to be well-suited 
to symbolic computation. A more straightforward approach is, using (13), to expand 
the left and right hand sides of (14) as polynomials in r and match terms order by 
order [19]. For an integrator of order K, we can write ak as 

Ofc-fVa?, (15) 
i=o 

and similarly 

& = X>jx0)+<%")• (16) 
j=0 

Using these expressions in (14), we obtain 

3=0  k=l j,j'=Ok,k'=l 

fc=l    \ j=0 j,j'=0 ) 



Collecting powers of r we find 

n2-l n2-l n2-! 

fc=l fc=l fc=l 

n2-l 

= n7l-ir^Afc-ir2^Afc-Ir2(^)2A2
fc + ...)-l 

fc=i ^ ' 

= -ir^f A, - ir2 £> A, - l/^ (^ ^ 
fc=l fc=l fc=l 

-r^ß^ßt)XkXkl + ....     (18) 
fc'>fc 

Multiplying (18) by Ap and using (12) yields 

r af + r2af - \ r2 £ «fa^ tr Ap(Afc A* + A*, A,) + ... 
k'>k 

= rß^ + r^-^Y^ß^ß^trXpXkXkl + .... (19) 
fc'>fc 

Equating like powers of r we have 

ßf] = of ; (20) 

^ - °i1} + I £ 40) ^ tr Ap [A*, A*]; (21) 
fc'>fc 

Clearly, one can continue this expansion to obtain equations for ßp ... ßp '. Moreover 
this technique is well suited to straightforward implementation in a symbolic algebra 
language. In such an implementation, one uses the explicit form of the Xk to obtain a 
matrix equation at each order, which naturally leads to a set of linear equations for p^'. 
This approach eliminates the need for developing explicit expressions for ß^'. 

4. An Example 

By way of example, we consider a two-level atom with population-preserving decay [11]. 
The Hamiltonian for this system is 

*-U™)- <22) 



where, for simplicity, we have taken Q(t) to be real. The dissipation operator is given 

by 

AH U )■ 
(23) 7P22      -57P12 

;7P2i       -7P22 

As we explained above, we are interested in the case of weak dissipation, i.e., in 7 <C e. 

Following the notation of (13), for a second order integrator we have ax = Q+| r Q', 

a2 = 0 and a3 = e, and we need to compute ßk through order r. From (20) and (21) 

we find ßi = Q + \ r 0', ß2 = r e fi, and #5 = e. Explicitly the unitary integrator is 

cos(Qr + |Q'r2)    -isin(Qr + |Jl'r2) 1 

-isin(QT + |fi'r2)        cos(Or + ifi'r2) J X 

cos(eQr2)    -sin(eQr2) 

sin(efir2)       cos(eQr2) 

We obtain an evolution operator, £(r), for the dissipative part by solving 

p = A[p] (25) 

using the midpoint rule: 

U = 

:..] (24) 

Qn+1 - Qn = T A[| (ß„+l + £>„)] • (26) 

We can interpret (26) as differencing (25) at t + \T, which yields an algorithm accurate 

to second order. Since A is a linear operator, (26) can be solved directly to provide an 

explicit formula for gn+i): 

Qn+i = G(r)Qn 

T7 
(Qn)u + 

l + ir7 
(ftO 22 

1 JTJ 
(Qn) 21 

1 + IT7 

1-^7 

1 + ^7 

(Qn)l2 

(Qn)22 

(27) 

I + 5T7 

Following (2), we can write the total evolution operator as 

Qn+i = Q(\r)oU{t,r)og{\r)Qn, (28) 

where 

U(t,T)Qn^UQnU\ (29) 

is the unitary integrator. Note that both tr Q — 1 and trlA = 1 and hence tr gn+i = tr gn. 

Below we compare the results of using this split-operator method with the results 

of a second-order predictor-corrector algorithm (Heun's method [20]).   Applying the 

predictor-corrector formulae to (3) gives 

Qn+i = Qn ~ ir [if (nr) + H((n + l)r), Qn] + rA[&] + \ r2A [A[ft,]] 

i-r2 
2 ' [H((n+l)T),[H(nT),Qn]] §ir2A 

-iir2[F((n + l)r),A[^]]; 

[if((n + l)r))ft,]] 

(30) 



where we have made use of the fact that A is linear. Now, as expected, tr Qn+\—tr gn = 0, 
since the trace of a commutator vanishes as does tr A, thus this algorithm also exactly 
conserves the population. 

Figure 1. The density matrix from a numerical solution of (3) with the Hamiltonian 
given by (22) and (31), the dissipation is given by (23), where e = 1, fi0 = §, *o = 10, 
a=^,7=^;,T=^j. The initial condition is given by (33). The heavy dashes and 
solid lines denote the predictor-corrector and unitary integrator solutions respectively. 
The panels are: inversion {(gn)22 - (Qn)u) (a), error in the inversion (6), Im (ß„)i2 (c), 
error in Im(ß„)i2 (d), tig* (e), error in tr^ (/), energy expectation value (tTHgn) 
(<?), and energy error (h). 
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Figure 2. The density matrix as in Figure 1 but with 7 = i^j 

We provide a pair of numerical examples to illustrate the advantage of the structure- 
preserving approach over the general-purpose algorithm. We take the interaction to be 

a gaussian pulse: 

n(t) = noe-{'-^, (3i) 

and use the parameters: 

e = 1, fio = |, «o = 10, a = f and 7 = i (32) 



We set the initial condition 

p(t = 0) = 
'   I l0ii/4 

2 4e 

1 _-i*-/4 1 
4C 2 

(33) 

and use the same time step r = ^ for both methods. The first set of numerical results 
is shown in Figure 1. Clearly the unitary integrator produces smaller errors in the 
inversion and coherence elements, and is also somewhat better in the energy than pre- 
dictor-corrector. As with symplectic integrators, the nature of the energy error is not 
surprising. Since the unitary integrator is effectively constructed from an approximate 
Hamiltonian, we cannot expect tr Hgn to be computed exactly but rather we expect the 
error in txHgn to oscillate rather than exhibit secular growth [14]. 

Figure 2 shows numerical results with the same parameters as above except 
for 7 = 1/100. In both cases, the energy error for both methods is quite similar and 
provides little insight into which method provides the more accurate solution. The 
errors in tr p2 are more telling: the operator splitting method clearly performs better. 
In Figure 2(e), we see how the structural errors introduced by the predictor-corrector 
algorithm reduce the decoherence caused by the dissipation. 

4-1. Discussion 

In view of the results shown, we considered several different approaches to handling 
the evolution of the dissipative operator, in order to understand the origin of the 
superior performance of the algorithm based on the unitary integrator. In addition 
to using the midpoint rule, splittings based on a predictor-corrector solution to (25) as 
well as splittings based on the exact solution of (25) were explored. (Since the exact 
solution requires the evaluation of an exponential, it is much more efficient to solve 
the differential equation than to employ the exact solution.) In each of these cases the 
full evolution was computed via (28) with the appropriate choice for Q. Regardless 
of the method of handling the dissipation, essentially the same results were obtained; 
clearly the advantage of the operator splitting approach is due to the use of the unitary 

integrator. 
To understand these results better, it is worthwhile to examine the numerical 

methods in detail through backwards error analysis [3-7]. In Section 1, we argued that 
dissipation operators are typically sufficiently simple to not possess a "structure" that 
is physically important. This assertion is borne out by the true dynamical equations 
corresponding to the various numerical solutions. For the full system (3), this analysis 
is rather cumbersome, so we consider separately the Hamiltonian and dissipative terms. 

We begin by examining the consequence of applying the midpoint rule to 

p = Aeff[p]^(     ]lP22      -ä'fcft»). (34) 
I        2^21        -7lP22     J 

The idea is to determine 71 and 72 such that when the midpoint rule is applied to (34) 
we obtain the exact solution of (25).   Since the midpoint rule is second order, we 



expect 7i 2 = 7 + 0(T
2
). The procedure is to compare the midpoint rule solution of (34) 

with the exact solution of (25), generated from the Taylor series expansion about r = 0. 
Some straightforward algebra gives 

7i = 7 " y2 TV + ^ A5 + ©(A7), (35) 

72 = 7 - ^ A3 + ^ A5 + 0(TW). (36) 

What this says is that when we use the midpoint rule to solve (25) we are in fact getting 
the exact solution of the slightly modified system (34). Now although 71 ^ 72, the 
physical meaning of the dissipation operator is only slightly changed since 

7i = i_lTy + 0(rV). (37) 
72 16 

The important point is that this modified dissipation operator is physically reasonable, 
with qualitative and quantitative behaviour very similar to the original dissipation 
mechanism. This is precisely what it means not to have a delicate structure; the 
quantitative and qualitative behaviour is robust to small perturbations in the form 
of the dynamical equations. However, had the dissipation model been more complex, 
it is quite likely that to determine Aeff it would have been necessary to introduce new 
couplings in the equations which would most likely lead to qualitatively different physical 
content. This is exactly what we will see below when we perform a similar analysis on 
the Hamiltonian part of the (3). 

Performing this same analysis for the predictor-corrector solution of (25) yields a 
very similar result. In this case we find 

7l = 7 + I r2 7
3 + I T3 7

4 + 4 r4 75 + ö(r576), (38) 
6      '       8      '15 

J_r273 + _lT374 + _ 
24     7      64      1      120 

72 = 7 + h r2 7
3 -I-1 r3 7

4 + ^ r4 7
5 + 0(r5

7
6), (39) 

and 

7i = i_Iry + 0(r373), (40) 
72 8 

leading us to the same basic conclusion as for the midpoint algorithm. 
We now turn to an analysis of the numerical solution of the purely Hamiltonian 

system (4). For this system, the predictor-corrector time advance is 

Qn+i = Qn-ir [H(nr) + H((n + l)r), gn} - \r2 [if((n + l)r), [H(nr), gn}} (41) 

In the same fashion as above, we seek to determine the effective Hamiltonian 

Heff 
Ceff      fteff    j  ^ (42) 

such that (41) applied using HeS gives the exact solution to (4). It turns out that for 
predictor-corrector, it is possible to achieve this goal only through third order in r; the 

10 



fourth order corrections result in a non-hermitian Heg. To third order we find: 

2 
€eff 

fiaff = fi 

r2(fi2 + e2) 

(fi2 + 62) -^-JiT^. 

(43) 

(44) 

At fourth-order, the effective system is no longer Hamiltonian but contains dissipation, 
thus we expect the predictor-corrector to introduce errors in the Hioe-Eberly invariants 
at fourth-order (for example, see (11) in Ref. [14]). This calculation becomes increasingly 
complex; we can adequately illustrate our point more clearly by considering a constant 
Hamiltonian. At fourth-order, solving (4) with (41) is equivalent to the exact solution 

of 

(45) hp = -i [HefS,p] + Aeff[p] 

with 

Ceff   = e 

a eff n 

l-|r2(Q2 + 62) 

+ ir3eO(fi2 + e2), 

(46) 

(47) 

and 

AeffH r3fi2(Q2 + e2 

+ 2T3( 

>( 

:2 + e2) [ 

p22 - Pll 

Pl2 - P21 

P21 - Pl2 

Pll - P22 

0 

Pll - P22 

Pll - P22 

0 

2r3e2(Q2 + e2) 
0 

P21 

Pl2 

0 
(48) 

Notice that the form of Aeff describes a much different set of physical processes 
than those responsible for the actual dissipation in (3). For example, the presence of 
the inversion in the off-diagonal elements and the fact that Aeff drives the system towards 
equal populations rather than decay to the lower state. Although ||Aeff|| <C ||A||, the 
numerical results show that Aeff is a sufficient perturbation to significantly affect the 
solution. Thus even though (3) does not exactly preserve the Cj, the remnants of the 
ideal structure of (4) are sufficiently strong that the perturbations introduced by the 
predictor-corrector are enough to adversely affect the accuracy of the numerical solution. 

5. Conclusions 

The advantages of unitary integration are seen most dramatically in ideal or nearly ideal 
systems sensitive to small errors. The important point to be made here, however, is that 
the operator splitting approach where a unitary integrator is used for the Hamiltonian 

11 



evolution is guaranteed to recover the ideal solution in the limit of small dissipation, 
whereas this is not the case for a generic method. This is an important consideration 
when studying near-ideal situations where decoherence is small, but may be the primary 
point of interest or limiting factor (as in studies of quantum computation in real 
systems, for example). Examples of such systems include (i) those where the time 
scale of interest is very long compared to the natural scales of the problem, (ii) systems 
with sensitive dependence upon initial conditions and (iii) systems where dissipation 
and decoherence are small, but of significant importance. Further areas of future 
investigation include application of these methods to such systems as (i) atomic clocks 
of various types [21], and (ii) numerical studies of decoherence in quantum computers. 
This latter application may include studies of decoherence-free subspaces, for which the 
structure of the dissipation operator is of significant importance. 
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LABORATORY OPERATIONS 

The Aerospace Corporation functions as an "architect-engineer" for national security programs, 
specializing in advanced military space systems. The Corporation's Laboratory Operations supports 
the effective and timely development and operation of national security systems through scientific 
research and the application of advanced technology. Vital to the success of the Corporation is the 
technical staff's wide-ranging expertise and its ability to stay abreast of new technological 
developments and program support issues associated with rapidly evolving space systems. 
Contributing capabilities are provided by these individual organizations: 

Electronics and Photonics Laboratory: Microelectronics, VLSI reliability, failure analy- 
sis, solid-state device physics, compound semiconductors, radiation effects, infrared and 
CCD detector devices, data storage and display technologies; lasers and electro-optics, solid 
state laser design, micro-optics, optical communications, and fiber optic sensors; atomic 
frequency standards, applied laser spectroscopy, laser chemistry, atmospheric propagation 
and beam control, LIDAR/LADAR remote sensing; solar cell and array testing and evalua- 
tion, battery electrochemistry, battery testing and evaluation. 

Space Materials Laboratory: Evaluation and characterizations of new materials and 
processing techniques: metals, alloys, ceramics, polymers, thin films, and composites; 
development of advanced deposition processes; nondestructive evaluation, component fail- 
ure analysis and reliability; structural mechanics, fracture mechanics, and stress corrosion; 
analysis and evaluation of materials at cryogenic and elevated temperatures; launch vehicle 
fluid mechanics, heat transfer and flight dynamics; aerothermodynamics; chemical and 
electric propulsion; environmental chemistry; combustion processes; space environment 
effects on materials, hardening and vulnerability assessment; contamination, thermal and 
structural control; lubrication and surface phenomena. 

Space Science Applications Laboratory: Magnetospheric, auroral and cosmic ray 
physics, wave-particle interactions, magnetospheric plasma waves; atmospheric and 
ionospheric physics, density and composition of the upper atmosphere, remote sensing 
using atmospheric radiation; solar physics, infrared astronomy, infrared signature analysis; 
infrared surveillance, imaging, remote sensing, and hyperspectral imaging; effects of solar 
activity, magnetic storms and nuclear explosions on the Earth's atmosphere, ionosphere and 
magnetosphere; effects of electromagnetic and particulate radiations on space systems; 
space instrumentation, design fabrication and test; environmental chemistry, trace detection; 
atmospheric chemical reactions, atmospheric optics, light scattering, state-specific chemical 
reactions and radiative signatures of missile plumes. 

Center for Microtechnology: Microelectromechanical systems (MEMS) for space 
applications; assessment of microtechnology space applications; laser micromachining; 
laser-surface physical and chemical interactions; micropropulsion; micro- and nanosatel- 
lite mission analysis; intelligent microinstruments for monitoring space and launch sys- 
tem environments. 

Office of Spectral Applications: Multispectral and hyperspectral sensor development; 
data analysis and algorithm development; applications of multispectral and hyperspectral 
imagery to defense, civil space, commercial, and environmental missions. 
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